

# APS Upgrade Accelerator Systems

Michael Borland for ASD and AES Accelerator Systems Division

APS Scientific Advisory Committee October 29, 2010



## Overview of Accelerator Upgrades

- Strive for no significant negative impacts on performance
- Increase capacity
  - More canted straights
  - Several long straights
- Improve beam stability to support more demanding experiments
  - Goal is a 2~4-fold improvement
- Increase brightness and flux for 25~100 keV
  - Optimized insertion devices, including SC undulators
  - 150 mA with 200 mA option
    - Front ends and beamlines will be 200-mA capable
  - Improved coupling control
- Enhance timing experiments
  - Provide high-rate short x-ray pulses (now 50~100 ps FWHM)
  - Retain existing fill patterns at higher current



## Long straight section (LSS) scheme

- LSS can be implemented at APS with a simple scheme
  - Remove the Q2 magnets on either side of SS
  - Remove the adjacent correctors
  - Remove the adjacent BPMs
  - Slide other components away from the ID



- Increases space available for ID from 4.8 to 7.7m
- Most cost-effective option for LSS
- Can use existing spare magnets for installation

#### LSS Placement

- Traditionally, only symmetric arrangements considered viable
  - Easier to obtain large injection aperture and lifetime
  - Increases cost by requiring experimental programs to move
- Multi-objective genetic algorithms used to develop lattices with reduced symmetry, directly tuning for
  - Large Touschek lifetime
  - Large dynamic aperture
  - Adequate chromaticity
- Variables include tunes and 25~50 sextupoles
- APS and ANL computing resources (fusion, intrepid) invaluable
- Have developed three basic lattices:
  - 8 "random" LSS
  - 8RLSS + SPX in sector 7
  - 8RLSS + SPX + RHB in sector 20



#### **LSS Lattice Functions**



- Horizontal lattice functions are little changed
- Vertical beta function increases from 3m to 5m
- 3.3 nm effective emittance



# Comparison with APS Today











## Lifetime Predictions (50 Ensembles)

|                            | Now               | 8RLSS     | 8RLSS+SPX | 8RLSS+SPX+RHB |
|----------------------------|-------------------|-----------|-----------|---------------|
|                            | $\xi_{x,y} = 7,6$ | $\xi = 9$ | $\xi = 7$ | $\xi = 7$     |
|                            | h                 | h         | h         | h             |
| 100 mA/24                  |                   |           |           |               |
| median                     | 9.2               | 8.3       | 8.2       | 7.4           |
| 5 <sup>th</sup> percentile | 8.6               | 6.3       | 7.1       | 5.8           |
| 200 mA/24                  |                   |           |           |               |
| median                     | -                 | 5.1       | 5.0       | 4.5           |
| 5 <sup>th</sup> percentile | -                 | 3.8       | 4.4       | 3.6           |
| 16 mA (hybrid)             |                   |           |           |               |
| median                     | -                 | 3.3       | -         | -             |
| 5 <sup>th</sup> percentile | -                 | 2.5       | -         | -             |
| 184 mA/56 (hybrid)         |                   |           |           |               |
| median                     | -                 | 9.8       | -         | -             |
| 5 <sup>th</sup> percentile | -                 | 7.4       | -         | -             |
| 200 mA/324                 |                   |           |           |               |
| median                     | 35.8              | 32.7      | 32.4      | 29.7          |
| 5 <sup>th</sup> percentile | 33.7              | 25.8      | 28.7      | 24.3          |

- Only 8RLSS has sufficient chromaticity for hybrid mode
- 8RLSS+SPX+RHB is marginal for 200 mA
- Work continues on higher-chromaticity solutions



# Other "Lattice" Options Explored

- Higher beam energy
  - Advantageous for ~50 keV and above
  - Detrimental for ~25 keV and below
- Lower beam energy
  - Advantageous for ~25 keV and below…
- Alternating beta functions
- Lower emittance "orbit displacement" scheme
  - ~1.5 nm effective emittance
  - Might be a special operating mode with 324 bunches
- Speculative low emittance schemes, e.g.,
  - ~4 GeV operation with 35 damping wigglers would give
     0.2 nm emittance (!)
- These proved less appealing than LSS



#### **Mockup Lattice Testing**

- We can test LSS-like lattices using our independent power supplies
  - Turn off Q1 magnets to simulate removing magnets
- Tested 8RLSS mock-up lattice
  - Lattice has normal injection efficiency and lifetime
  - Was essential to steer the beam to the center of the sextupoles
  - Implication: cannot have significant steering of beam to compensate for misaligned beamlines
    - Must realign 37 beamlines (23 IDs and 14 BMs)
    - · Probably should start ASAP
- Tested 8RLSS+SPX+RHB mockup lattice
  - Lattice has normal injection efficiency
  - Lifetime is significantly reduced (5 hours at 100 mA)
  - Study of this lattice continues



## Long Taper Development

- Impedance model allows prediction of single-bunch limit
- LSSs will increase effective vertical impedance
  - Longer chamber and larger beta functions
  - Single bunch limit 16 mA → 12 mA
  - Exacerbated by problems obtaining very high chromaticities
- Longer (linear) tapers will reduce impedance
- Tapers will use "accelerator real estate"
- APS-U involves replacing tapers at LSS, plus small gap chamber at 4ID
- Also considering copper- or silver-coating of chambers



#### **Beam Stabilization**

- APS has fallen behind in beam stability
  - Better stability is like a brightness upgrade
  - Targeting a two- to four-fold improvement
- Components of beam stability upgrade
  - New BPM electronics
  - Storage ring vacuum chamber microwave mode dampers
  - Real-time feedback system upgrade
  - Front-end hard x-ray beam position monitor developments
  - Tunnel temperature regulation
  - BPM position sensing

|            |         | AC rms Motion, 0.1-200 Hz |               | Long-term drift (One Week) |               |
|------------|---------|---------------------------|---------------|----------------------------|---------------|
|            |         | $\mu$ m rms               | $\mu$ rad rms | $\mu$ m rms                | $\mu$ rad rms |
| Horizontal | Present | 5.0                       | 0.85          | 7.0                        | 1.4           |
|            | Upgrade | 3.0                       | 0.53          | 5.0                        | 1.0           |
| Vertical   | Present | 1.6                       | 0.80          | 5.0                        | 2.5           |
|            | Upgrade | 0.42                      | 0.22          | 1.0                        | 0.5           |



#### New BPM Electronics for ID Beam Control



- Will upgrade electronics to reduce
  - AC noise floor
  - Long-term drift
- Options
  - APS-design BSP-100 module
  - Libera units (commercial)
  - NSLS-II BPM electronics
- Scope:
  - 70+ rf BPMs (need three for each canted straight)
  - 70 photon BPMs
- Benefit:
  - Two-fold reduction in AC noise floor



## **Chamber Mode Dampers**





- RF modes in large-aperture chambers corrupt BPM signals
- These devices effectively short out those modes
- Scope: slide into unused NEG strip slots in 200 chambers
- Benefit: doubles the number of available vertical BPMs for feedback
- Recently tested, appears to work as expected



## Real-time feedback system upgrade

- Originally commissioned in 1997
- Limited to 1.5 kHz sample rate ⇒ 60 Hz closed-loop bandwidth

#### Scope:

- Complete replacement of existing DSPs & reflective memory system
- Double the number of BPMs interfaced to the system
- Double the number of fast steering correctors (relocate and interface to existing correctors)

#### Benefits:

- Increase closed-loop bandwidth to 200 Hz
- Improve AC stability four-fold
- Improve feedforward system that mitigates top-up disturbance



## Hard X-ray BPM (GRID XBPM)

- Photo-emission BPMs have residual 10~20 micron gapdependent errors
- X-ray fluorescence is immune to soft bending magnet radiation background
- Major challenge is high power density
- In-air prototype under test at 35ID



Bingxin Yang

Four Pin diodes (Two sets, top and bottom)

Pinhole "camera" apertures

X-rays

#### **GRID XBPM Tests**



- Photo-emission BPMs see BM background, giving 10~20 micron gap-dependent variation
- GRID XBPM eliminates this issue
- Scope: Install one GRID XBPM in each ID front end (34 total) as part of FE upgrade
- Benefit: two-fold improvement in long-term stability



# **Undulator Types (Partial List)**

| Туре                        | Status                           | Special features                                                               | Issues                                         | # APS-U |
|-----------------------------|----------------------------------|--------------------------------------------------------------------------------|------------------------------------------------|---------|
| Planar<br>HPM               | Many in use at APS               | Established technology                                                         | Min. gap limited by chamber                    | 16      |
| Planar<br>revolver<br>HPM   | In use<br>elsewhere              | On-line selection of periods                                                   | Challenging for longer devices, longer periods | ?       |
| Planar in-<br>vacuum<br>HPM | In use elsewhere                 | Shorter periods, smaller gaps                                                  | Large beam impedance                           | 0       |
| SC planar                   | APS-U<br>R&D                     | Shorter periods, high brightness                                               | See below                                      | 3       |
| APPLE                       | In use elsewhere                 | Pol. control, harm. suppress., on-axis heat load suppress.                     | Non-linear beam dynamics                       | 2       |
| IEX<br>undulator            | In devel.<br>(non APS-<br>U R&D) | Pol. control, harm. suppress., on-axis heat load suppress., low energy photons | Non-linear beam dynamics                       | 1       |



#### Present Performance (100mA) with Planar Undulators



- HPM devices, 2.4 m long, 10.75 mm gap
- All curves respect original APS front end limits
- Hypothetical U16 and U20 based on design fit.



#### APS-U Performance at 150 mA, Canted SSS



- HPM devices: 2.1 m long, 10.75 mm gap
- SCU devices: 1.2 m long, 9.0 mm gap
- All curves respect canted front end limits

#### APS-U Performance at 150 mA, Canted SSS



- HPM devices: 2.1 m long, 10.75 mm gap
- SCU devices: 1.2 m long, 9.0 mm gap
- All curves respect canted front end limits

#### APS-U Performance at 150 mA, Canted LSS



- HPM devices: 3.5 m long, 10.75 mm gap
- SCU devices 2.6 m long, 9.0 mm gap
- All curves respect canted front end limits

#### APS-U Performance at 150 mA, SSS, HHL



- HPM devices: 4.8 m long, 10.75 mm gap
- SCU devices 3.9 m long, 9.0 mm gap
- All curves respect HHL end limits

#### **SCU Status**

- Prototyping 16mm period device with NbTi wire
  - Targeting 20~25 keV first harmonic
- 42-pole test assemblies manufactured and tested
- Quench at ~700 A
- Design field of 0.61 T reached for 500 A current
  - Gives 20.5 keV
- Rms phase error only 5 deg w/o shimming
  - Comparable to HPM devices



Gives good performance for 3rd and 5th harmonics



#### **R&D Plan for SCU**

- A short prototype (SCU0) will be installed to answer critical issues
- Measurement of beam-induced heating in various operation modes
- Validation of cryogenic design concept
- Development and verification of methods for building and tuning devices to achieve required field quality

Development of required magnetic measurement

techniques

 Characterization of long-term stability

 Investigation of operational issues, e.g., effect of SCU quench on ring operation, effect of beam strike



#### **Revolver IDs**

 Web application developed to make optimized choices of revolver ID periods





Example of optimized revolver choice for working between 10 and 40 keV at 150 mA with HHL FE and a speculative 480-cm-long insertion device

(U33 curve is for present APS at 100 mA)



#### Revolver for 25-to-100 keV





## Short-Pulse X-rays (SPX)

- One important component of the upgrade is to provide short-pulse x-rays
  - Addresses a weakness of storage rings and an area of significant interest
- Several possible schemes
  - Superconducting deflecting cavities
  - Laser slicing
  - "Low alpha" operation
  - Rf phase modulation
  - Harmonic cavity
- Only the first two are really viable
  - Compatible with normal APS operations at 100+ mA
  - Reach to few ps regime or shorter
- Deflecting cavities preferred: much higher average flux



# **Zholents' Transverse Rf Chirp Concept<sup>1</sup>**



(Adapted from A. Zholents' August 30, 2004 presentation at APS Strategic Planning Meeting.)

<sup>1</sup>A. Zholents *et al.*, NIM A 425, 385 (1999).



#### Predicted Pulse Duration (10 keV, 2.4-m U33)



- Assumes slits set for 1% transmission
- Limitations on voltage (related to LSS)
  - 4 MV requires increasing 6ID chamber gap by ~3.5mm<sup>1</sup>
  - 2 MV possible with standard ID chambers





#### Other Applications of Chirped Pulses

Spatial encoding of time information in a pump-probe experiment



Coherent imaging with a large vertical spot size





# **Tolerances from Beam Dynamics Simulations**

Phase and voltage errors in the crab cavities can affect important performance parameters

| Specification name  | Rms Value        | Driving requirement      |
|---------------------|------------------|--------------------------|
| Common-mode voltage | < 1%             | Keep intensity and pulse |
| variation           |                  | length variation under   |
|                     |                  | 1% rms                   |
| Common-mode phase   | $<4.8^{\circ}$   | Keep intensity variation |
| variation           |                  | under 1% rms             |
| Voltage mismatch    | < 0.5%           | Keep rms emittance       |
| between cavities    |                  | variation under 10% of   |
|                     |                  | nominal 35 pm            |
| Phase error between | $< 0.07^{\circ}$ | Keep rms beam motion     |
| cavities            |                  | under 10% of beam        |
|                     |                  | size/divergence          |

- Simulations are for static errors or modulations far from tunes
- Differential phase tolerance particularly challenging
- Tolerances are for 4 MV deflection



## Scope of SPX Project

- Two cryomodules, each with 8 SC cavity cells
  - One in, e.g., 6ID upstream, one in 8ID upstream
- Cryoplant for 2K operation of cavities

| Quantity                                   | Value     |
|--------------------------------------------|-----------|
| Refrigeration at 2.0 K static+dynamic)     | 120 W     |
| Refrigeration at 4.5 K(static)             | 200 W     |
| Thermal shield cooling at 80-90 K (static) | 4 kW(LN2) |

- High-power rf system delivering ~6.5 kW/cell
  - Possible topologies include one klystron/cell or one klystron/2-cells
- Low-level rf system capable of delivering required stability
- Diagnostics
  - Measure beam tilt inside and outside SPX region
  - Measure beam arrival time
  - Beam loss monitors to protect cavities



#### SPX R&D Plan

- On-going R&D program covering
  - Lattice development
  - Beam dynamics
  - Collective effects
  - Cavity design including mode damping
  - Cryostat and cryogenic system design
  - LLRF and timing design
  - High-power rf system
  - Diagnostics
- Planning installation in ring of test system
  - Pair of cavities, either in one sector or two
  - Presently defining what risks can be addressed by this
  - Many risks can be addressed by off-line experiments



## **Higher Current**

- Accelerator is presently capable of 150 mA operation in all fill modes
  - Recent tests show that only 2 klystrons are needed
- 200 mA operation is taken as a long-term goal
  - All changes must be 200mA-compatible
  - Impact on ID optimization needs to be carefully considered
- Requires several upgrades
  - RF coupler upgrade to increase power handling capability to 200 kW (now 150 kW)
  - Replacement of HOM dampers (four cavities) to improve power-handling capability
  - Modest upgrade of controls to improve stability for fourklystron operation
- Even 150 mA operation requires beamline/front-end upgrades



## Front End Upgrades

Existing front-end installations at APS

| Front-end Type           | Max Power (kW) | Max Power Density (kW/mrad <sup>2</sup> ) |
|--------------------------|----------------|-------------------------------------------|
| Original APS FE          | 6.9            | 198                                       |
| <b>Undulator Only FE</b> | 8.9            | 245                                       |
| Canted FE                | 20             | 281                                       |
| HHL FE                   | 21             | 590                                       |

#### Scope of FE installations for APS-U

| Type                     | Status          | Existing | New |
|--------------------------|-----------------|----------|-----|
| Original                 | Existing design | 16       | 0   |
| Undulator only           | Existing design | 4        | 0   |
| Canted                   | Existing design | 4        | 4   |
| High Heat Load           | Existing design | 2        | 15  |
| Long Straight Canted     | New design      | 0        | 2   |
| Short Pulse X-ray Canted | New design      | 0        | 1   |
| Very High Heat Load      | New design      | 0        | 1   |
| Bending Magnet           | Existing design | 23       | 3   |

 Proposed HHL R&D essential to define limits of existing and future front-end designs

#### **Accelerator Upgrades Target Mission Requirements**

- Need for additional beamline capacity
  - 8 LSS
  - Additional canted straights
- Enhanced brightness for 25~100 keV
  - SCU, optimized IDs
  - 8 LSS
  - Higher current
  - Upgraded front ends
- Allow more demanding experiments to be performed by providing improved beam stability
- Support time-resolved studies at few-ps scale
  - Crab cavity system
  - Retention of existing fill patterns
- Significant challenges exist and are being addressed through R&D

